Metrics with Galilean conformal isometry

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Super Galilean conformal algebra in AdS/CFT

Galilean conformal algebra (GCA) is an Inönü-Wigner (IW) contraction of a conformal algebra, while Newton-Hooke string algebra is an IW contraction of an AdS algebra which is the isometry of an AdS space. It is shown that the GCA is a boundary realization of the Newton-Hooke string algebra in the bulk AdS. The string lies along the direction transverse to the boundary, and the worldsheet is AdS...

متن کامل

Galilean Conformal Algebras and AdS/CFT

Non-relativistic versions of the AdS/CFT conjecture have recently been investigated in some detail. These have primarily been in the context of the Schrodinger symmetry group. Here we initiate a study based on a different nonrelativistic conformal symmetry: one obtained by a parametric contraction of the relativistic conformal group. The resulting Galilean conformal symmetry has the same number...

متن کامل

Locally conformal symplectic nilmanifolds with no locally conformal Kähler metrics

We report on a question, posed by L. Ornea and M. Verbitsky in [32], about examples of compact locally conformal symplectic manifolds without locally conformal Kähler metrics. We construct such an example on a compact 4-dimensional nilmanifold, not the product of a compact 3-manifold and a circle.

متن کامل

On conformal transformation of special curvature of Kropina metrics

      An important class of Finsler metric is named Kropina metrics which is defined by Riemannian metric α and 1-form β  which have many applications in physic, magnetic field and dynamic systems. In this paper, conformal transformations of χ-curvature and H-curvature of Kropina metrics are studied and the conditions that preserve this quantities are investigated. Also it is shown that in the ...

متن کامل

Conformal Metrics with Constant Q-Curvature

We consider the problem of varying conformally the metric of a four dimensional manifold in order to obtain constant Q-curvature. The problem is variational, and solutions are in general found as critical points of saddle type. We show how the problem leads naturally to consider the set of formal barycenters of the manifold.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review D

سال: 2011

ISSN: 1550-7998,1550-2368

DOI: 10.1103/physrevd.83.066018